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Abstract: Accurately and adequately modelling and analyzing relationships in real random phenomena involving several 

variables are prominent areas in statistical data analysis.  Applications of such models are crucial and lead to severe 

economic and financial implications in human society. Since the beginning of developments in Statistical methodology as 

the formal scientific discipline, correlation based regression methods have played a central role in understanding and 

analyzing multivariate relationships primarily in the context of the normal distribution world and under the assumption of  

linear association.  In this paper, we aim to focus on presenting notion of dependence of random variables in statistical sense 

and mathematical requirements of dependence measures. We consider copula functions and mutual information which are 

employed to characterize dependence. Some results on copulas and mutual information as measure of dependence are 

presented and illustrated using real examples. We conclude by discussing some possible research questions and by listing 

the important contributions in this area.  
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1 Introduction 

Understanding and modeling dependence in 

multivariate relationships has a pivotal role in 

scientific investigations.  In the late nineteenth 

century, Sir Francis Galton [12] made a 

fundamental contribution to the understanding of 

multivariate relationships using regression analysis 

by which he established linkage of the distribution 

of heights of adult children to the distribution of 

their parents' heights. He showed not only that each 

distribution was approximately normal but also that 

the joint distribution could be described as a 

bivariate normal. Thus, the conditional distribution 

of adult children’s height given the parents' height 

could also be modeled by using normal distribution. 

Since then regression analysis has been developed 

as the most widely practiced statistical technique 

because it permits to analyze the effects of 

explanatory variables on response variables. 

However, although widely applicable, regression 

analysis is limited chiefly because its basic setup 

requires identifying one dimension of the outcome 

as the primary variable of interest, dependent 

variable, and other dimensions as independent 

variables affecting dependent variable. Since this 

may not be of primary interest in many applications, 

focus should be on the more basic problem of 

understanding the distribution of several outcomes 

of a multivariate distribution. Normal distribution is 

most useful in describing one-dimensional data and 

has long dominated the studies involving 

multivariate distributions. Multivariate normal 

distributions are appealing because their marginal 

distributions are also normal and the association 

between any two random variables can be fully 

described knowing only the marginal distributions 

and an additional dependence parameter measured 

by the Pearson’s linear correlation coefficient. 

However there are many situations where normal 

distributions fail to provide an adequate 

approximation to a given situation. For that reason 

many families of non-normal distributions have 

been developed mostly as immediate extensions of 

univariate distributions. However such a 

construction suffers from that a different family is 
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needed for each marginal distribution, extensions to more than just the bivariate case are not clear and 

measures of dependence often appear in the marginal distributions.  

 

 In this paper we focus on the notion of dependence of random variables in statistical sense and 

mathematical requirements of dependence measures. We describe copula functions and mutual information 

which can be alternatively used to characterize dependence. Some results on measuring dependence using 

copulas and mutual information are presented.  We illustrate applications of these dependence measures 

with the help of two real data sets. Lastly we conclude by discussing some possible research questions and 

by listing some important contributions on this topic. 

 

2 Statistical Dependence Measures 

 

 The notion of Pearson correlation   in Statistical methodology has been central in understanding 

dependence among random statistical variables. Although correlation is one of the omnipresent concepts, it 

is also one of the most misunderstood correlation concepts. The confusion may arise from the literary 

meaning of the word to cover any notion of dependence. From mathematicians’ perspective, correlation is 

only one particular measure of stochastic dependence. It is the canonical measure in the world of 

multivariate normal distributions and in general for spherical and elliptical distributions. However it is 

well known fact that in numerous applications, distributions of the data seldom belong to this class.  The 

correlation coefficient ρ between a pair of real-valued non-degenerate random variables   and   with 

corresponding finite variances    
        

  is the standardized covariance     , i.e.,              , 

  ,    -   The correlation coefficient is a measure of linear dependence only. In case of independent 

random variables, correlation is zero. In case of imperfect linear dependence, misinterpretations of 

correlation are possible [6,7,10]. Correlation is not in general an ideal dependence measure and causes 

problems when distributions are heavy-tailed. Some examples of commonly used heavy-tailed distributions 

are: One-tailed (Pareto distribution, Log-normal distribution, Lévy distribution, Weibull distribution with 

shape parameter less than one, Log-Cauchy distribution) and two-tailed (Cauchy distribution, family of 

stable distributions excepting normal distribution within that family, t- distribution, skew lognormal 

cascade distribution). Independence of two random variables implies they are uncorrelated but zero 

correlation does not in general imply independence. Correlation is not invariant under strictly increasing 

linear transformations. Invariance property is desirable for the statistical estimation and significance 

testing. Additionally, correlation is sensitive to outliers in the data set. The popularity of linear correlation 

and correlation based models is primarily because being expressed in terms of moments it is often 

straightforward to calculate and manipulate them under algebraic operations. For many bivariate 

distributions it is simple to calculate variance and covariance and hence the correlation coefficient. 

Another reason for the popularity of correlation is that it is a natural measure of dependence in multivariate 

normal distributions and more generally in multivariate spherical and elliptical distributions. Some 

examples of densities in the spherical class are those of the multivariate t-distribution and the logistic 

distribution. Another class of dependence measures is rank correlations distributions. Rank correlations are 

used to measure correspondence between two rankings and assess their significance. Two commonly used 

rank correlation measures  are  Kendall's   and Spearman's   . Assuming random variables   and   have 

distribution functions  ( )      ( )  Spearman’s rank correlation      ( ( )  ( ))  If 

(     ) and (     ) are two independent pairs of random variables, then the Kendall’s rank correlation is 

    ,(     )(     )   -    ,(     )(     )   -  The main advantage of rank 

correlations over linear correlation is that they are invariant under monotonic transformations. However 

rank correlations do not lend themselves to the same elegant variance-covariance manipulations as linear 

correlation does since they are not moment-based. 

 

 A measure of dependence, like linear correlation, summarizes the dependence structure of two 

random variables in a single number. Another excellent discussion of dependence measures is in the paper 

by Embrecht, McNeil and Straumann [7]. Let  (   )  be a measure of dependence which assigns a real 

Embrechts number to any real-valued pair of random variables (X, Y). Then dependence measure D(X,Y) is 
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desired to have properties: (i) Symmetry:  (   )     (   ); (ii) Normalization:    (   )   ; 
(iii) Comonotonic or Countermonotonic: The notion of comonotonicity in probability theory is that a 

random vector is comonotonic if and only if all marginals are non-decreasing functions (or non-increasing 

functions) of the same random variable. A measure  (   ) is comonotonic if  (   )        or 

countermonotonic if   (   )        ; (iv) For a transformation   strictly monotonic on the range 

of  ,  (( ( )  )   (   ) ,    ( )     increasing or   decreasing. Linear correlation    satisfies 

properties (i) and (ii) only. Rank correlations fulfill properties (i) - (iv) for continuous random variables   

and  . Another desirable property is:  (v)   (   )         (Independent). However it contradicts 

property (iv). There are no dependence measure satisfying both properties (iv) and (v). If we desire 

property (v), we should measure dependence      (   )   . The disadvantage of all such 

dependence measures   (   ) is that they cannot differentiate between positive and negative dependence 

[27, 49]. 
 

3 Copula Functions 
 

 Multivariate distributions where normal distributions fail to provide an adequate approximation 

can be constructed by employing the copula functions. Copula functions have emerged in mathematical 

finance, statistics, extreme value theory and risk management as an alternative approach for modeling 

multivariate dependence. Every major statistics software package like Splus, R, Mathematica, MatLab, etc. 

includes a module to fit copulas. The International Actuarial Association recommends using copulas for 

modeling dependence in insurance portfolios. Copulas are now standard tools in credit risk management.  

 

 A theorem due to Sklar [49] states that under very general conditions, for any joint cumulative 

probability distribution function (CDF),  (       ) , there is a function  ( )  known as the copula 

function such that the joint CDF can be partitioned as a function of the marginal CDFs,   (  )  The 

converse is also true that this function couples any set of marginal CDFs to form a multivariate CDF.  

 

3.1 Copula: Definition and Properties 

 

 The  - dimensional probability distribution function   has a unique copula representation  

 

 (            )   (  (  )   (  )       (  ))   (            )                                         (   ) 
 

          The joint probability density function in copula form is written as  

 

 (            )      
   (  )   (  (  )   (  )       (  ))                                                      (   ) 

 

where   (  ) is each marginal density and coupling is provided by copula density  

 

 (            )   
  (            )                                                                                (   ) 

 

if it exists.   

 

           In case of independent random variables, copula density  (            ) is identically equal to 

one. The importance of the above equation  (            ) is that the independent portion expressed as 

the product of the marginals can be separated from the function  (            )  describing the 

dependence structure or shape. The dependence structure summarized by a copula is invariant under 

increasing and continuous transformations of the marginals.  

 

         The simplest copula is independent copula 
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    (            )                                                                                                                  (   ) 
 

with uniform density functions for independent random variables on [0,1].  The Frécht-Hoeffding bounds 

for copulas [10]: The lower bound for  -variate copula is  

 (            )     {    ∑  
 
    }   (            )                                                (   ) 

The upper bound for  -variate copula is given by  

 (            )     
  *       +

     (            )                                                                          (   ) 

For all copulas, the inequality  (         )  (         )    (         ) must be satisfied. This 

inequality is well known as the Frécht-Hoeffding bounds for copulas.  Further,   and   are copulas 

themselves. It may be noted that the Frécht-Hoeffding lower bound is not a copula in dimension    . 
Copulas     and   have important statistical interpretations [43]. Given a pair of continuous random 

variables (     ), copula of (     ) is  (     ) if and only if each of    and    is almost surely 

increasing function of the other; copula of (     ) is  (     ) if and only if each of    and    is almost 

surely decreasing function of the other and copula of (     ) is  (     )        if and only if    and 

   are independent. 

 

3.2 Copula and Rank Correlations 

 

 In case of non-elliptical distributions, it is better not to use Pearson correlation. Alternatively, we 

use rank correlation measures like  Kendall's  , Spearman's    and Gini's index  . Rank correlations are 

invariant under monotone transformations and measure concordance. Under normality, there is one-to-one 

relationship between these measures [29].   

               
  

 
                                                                                                                                           (3.7) 

         
    
 
                                                                                                                                           (   ) 

Kendall's  , Spearman's    and Gini's index   could be expressed in terms of copulas [45,50]: 

   ∫  ∫  
  
 (     )  (     )                                                                                                        (   ) 

     ∫  ∫  
  
      (     )                                                                                                         (    ) 

   ∫  ∫  
  
(                 )  (     )                                                                       (    ) 

It may be noted however that the Pearson's linear correlation coefficient can not be expressed in terms of 

copula. 

 

3.3 Copula and Tail Dependence Measures 

 

           Tail dependence index of a multivariate distribution describes the amount of dependence in the 

upper right tail or lower left tail of the distribution and can be used to analyze the dependence among 

extreme random events. Tail dependence describes the limiting proportion that one margin exceeds a 

certain threshold given that the other margin has already exceeded that threshold. Upper tail dependence of 

a bivariate copula  (     ) is defined by [22] 

       
   
0
*      (   )+

   
1                                                                                                           (    ) 

If it exists, then  (     ) has upper tail dependence for     (   ] and no upper tail dependence for 

    .  Similarly, lower tail dependence in terms of copula is defined 

       
   
, (   )  -                                                                                                                 (    ) 
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Copula has lower tail dependence for     (   ] and no lower tail dependence for     . This measure 

is extensively used in extreme value theory. It is the probability that one variable is extreme given that 

other is extreme. Tail measures are copula-based and copula is related to the full distribution via quantile 

transformations, i.e., for all         (   ], 
 (     )   (  

  (  )   
  (  ))                                                                                         (    ) 

 

3.4  Copula:  Simulation 

 

Simulation has a pivotal role in replicating and analyzing data. Copulas can be applied in simulation and 

Monte Carlo studies. Johnson [23] discusses methods  to generate a sample from a given joint distribution. 

One such method is a recursive simulation using the univariate conditional distributions.  The conditional 

distribution of    given first     components is  

 (              )  
     (       )

           
 
     (         )

           
                                                              (    ) 

For      simulation procedure is:  Select a random number    from Uniform [0,1] distribution and then 

simulate a value    from  (              ),           
 

3.5 Gaussian and   ( ) Copulas  

 

Elliptical copulas are copulas for the elliptical distributions. The most commonly used elliptical 

distributions are the Gaussian and student - t distributions. The key advantage of elliptical copulas is that it 

is possible to specify different levels of correlation between the marginals. However elliptical copulas do 

not have closed form expressions and are restricted to have radial symmetry. Gaussian copula is defined by  

 (     )

  ∫  
   (  )

  

∫
 

  √    
   [ 

          

 (    )
]                                                     (    )

   (  )

  

 

and the student t- copula with  ( ) degrees of freedom, i.e.,   ( ) copula is 

 (     )

  ∫
   (  )

  

∫
 

  √    
   [ 

          

 (    )
]

   
 

                       (    )
   (  )

  

 

The copula parameter ρ in terms of  is  

     .
 

 
 /                                                                                                                                            (    ) 

Gaussian copulas allow any marginal distribution and any positive definite correlation matrix.  Gaussian 

copulas consider only pairwise dependence between individual components of a random variable. 

However problem may be because correlation matrix can be difficult to estimate for too many parameters. 

Further Gaussian densities are parameterized using Pearson correlation coefficients which are not invariant 

under monotone transformations of original variables. 

 

3.6 Archimedean Family of Copulas 

 

          Archimedean copulas are an important class of copulas which are easier to construct [43].  They 

possess nice mathematical properties and many known copula families belong to this class.  Let  be a 

continuous decreasing function from ,   - to )[ ,0   such that 0)1(  and 1 be its inverse given by 

 











t

tt
t

)0(0

)0(0)(
1

)(
1




                                                                                           (3.19) 

Then the Archimedean copula is the function  

].1,0[2,1  )),2()1((
1

)2,1( 


 uuuuuuC                                                                     (3.20) 



  
                       Pranesh Kumar: Statistical Dependence: Copula Functions …   

5 

The function  is called a generator of the copula C . Some examples of Archimedean copulas are given in 

Table 1.  For some applications of copula based analyses in clinical, economic and engineering studies, 

reference is made to [19, 31-36]. 

 

 

3.6  Illustration: Application of the Ali-Mikhail-Haq (AMH) Copula  

 

 We consider a study in which twenty three patients were registered in a split-mouth trial for the 

treatment of gingivitis [41]. In these trials four sites located either on the left or right side of a patient’s 

mouth were randomly assigned to either the treatment (chlorhexidine) or control (saline). Plaque 

measurements were taken pre-treatment and two weeks after baseline on four sites of the patient’s upper 

jaw. In this illustration, we consider modeling the post-treatment proportions of sites exhibiting plaque in 

treatment    and control    groups at a two-week follow-up visit. Post-treatment proportions and 

summary statistics are presented in Table 2. Estimated Kendall’s τ is 0.1761. The marginal distributions 

estimated from the q-q plots are:   ~Beta (66.88, 8.16) and   ~Beta (57.91, 17.13).  The AMH copula 

parameter θ is estimated equal to 0. 6481. Figure 1 shows the relationship between AMH copula parameter 

θ and the Kendall and Spearman rank correlations. In Figure 2, we show the scatter plots of simulated 

bivariate data using AMH copula for n = 50 and 100. Estimated AMH copula density model from data and 

conditional probabilities are plotted in Figure 3. Tail dependence behavior using AMH copula is exhibited 

in Figure 4. 

 

4  Mutual Information Based Measures 

 

 Dependence from the information theoretic point of view can be quantified by measuring the 

distance between a given joint probability density model  (       )   and a mean field model  

∏  (  )
 
     where  ( ) denotes the density function. Information theory provides a unifying framework 

for ideas from areas as diverse as differential geometry, physics, statistics and telecommunications [24, 25, 

26]. 

 

4.1  Entropy and Conditional Entropy 

 

Consider a finite real valued discrete random variable   with its probability distribution (        
      ∑       ). The measure of uncertainty associated with the variable   is called entropy and 

defined as  

 ( )      ∑                                                                                                                       (4.1)                                                                                                             

where   is an arbitrary constant. Constant   is generally taken as unity and logarithm base 2 when entropy 

is measured in bits. The uncertainty takes the maximum value when all probabilities are equal, i.e., 

      . Thus, the bounds for  ( ) are:    ( )      .  Zero entropy implies that the process 

of generating   is deterministic. Closer is the value of  ( ) to  , lesser is the uncertainty of   while the 

value of  ( ) being closer to      means greater uncertainty.  ( ) is a monotonic increasing function 

of  . 

For the simplicity in notations, we will denote two random variables by   and   with respective 

probability distributions (              ∑       ) and (              ∑       ) and the joint 

probability distribution (          ∑         ) where        is the probability of a pair (     ) 

belonging to the rectangle    ,    
    

 -     [    
    

 ] following the partitioning of codomain of   and 

 . The joint entropy of    and   is then defined by  

 (   )     ∑                                                                                                                      (   ) 

When   and   are independent,          ,      , the entropy of the joint distribution equals the sum of 

respective entropies of    and  , i.e.,  (   )   ( )   ( ) . However when they are not 

independent, question is: How much uncertainty of   diminishes if we know that     . For more 
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properties of entropy, we refer to [25,26,38]. For general considerations, stochastic dependence of random 

variables   and   results in reducing their joint entropy. In such a case, it is relevant to introduce the 

conditional entropy  (    ) which represents the amount of uncertainty of   given that    is observed; 

 (    )   ∑                   where      is the conditional probability of   taking a value    given 

that   has assumed  a value   . The conditional entropy  (   )  is the amount of uncertainty of   

remaining given advance knowledge of   and is obtained by averaging  (      ) over all   and equals to  

  (   )     ∑              
 

                                                                                         (   ) 

Similarly the conditional entropy  (   )  is defined. Conditional entropy is nonnegative and 

nonsymmetric. It is easily verified that    (    )   ( )   (   )   ( )   (    )  and, 

therefore  (    )   ( )  or  ( )  with equality holding if and only if   and   are stochastically 

independent.   

 

4.2   Mutual Information 

 

            For a better understanding, if we assume   and   are input and output respectively of a stochastic 

system, then  ( ) represents the uncertainty of input   before output   is observed while  (   ) is the 

uncertainty of input   after output   has been realized. The quantity  (   )   ( )   ( )  
 (   )   (   )   (   )   (   )   is called the mutual information (distance from 

independence) between   and  . An interesting alternative for characterizing dependence is the expression 

of mutual information in terms of the Kullback-Liebler distance between joint distribution and the two 

marginal distributions [30] defined by 

  (   )  ∑          
   

    
                                                                                              (   ) 

where the Kullback-Liebler distance between two probability distributions   and   is  (    )  
∑            (     ) .  Mutual information can also be expressed in terms of divergence between 

conditional distribution and marginal distributions by 

  (   )  ∑     ∑          (    /   )                                                                           (   ) 

Mutual information thus measures the decrease in uncertainty of   caused by the knowledge of   which is 

the same as the decrease in uncertainty of   caused by the knowledge of  . The measure  (   ) indicates 

the amount of information of   contained in   or the amount of information of   contained in  . 

Obviously  (   )   ( ), the amount of information contained in   about itself. 

 

To transmit  , how many bits on average would it save if both ends of the line knew  ?  Information gain 

answers this question and is defined as    

   (   )   ( )   (   )                                                                                        (   ) 
It is seen that  (   )   (   )  and  (   )    with equality when   and   are stochastically 

independent and  (   )   ( ). The relative information gain is [28]: 

  (   )  
 (   )

 ( )
  (   ) , (   )   (   )-                                                     (   ) 

which shows how much uncertainty of   diminishes given information about   relative to the initial 

uncertainty of  . Other properties of the relative information gain  (   ):    (   )    and  (   ) 
assume zero value if and only if   and   are stochastically independent. In case where there is no 

information about which random variable influences the other or which takes values first, then a 

symmetrical relative information gain measure 

    (   )    (   ) , ( )   ( )-    (   ) , (   )   (   )            (   ) 
expresses the uncertainty from the joint distribution of   and   to the uncertainty in case of independence. 

This measure  (   ) has the properties:    (   )    and  (   )    if and only if   and   are 

stochastically independent. The measures  (   ) and  (   ) can be used to characterize the stochastic 

dependence between   and  . They are also useful in characterizing the dependence of qualitative 
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variables under the hypothesis that the values of the qualitative variable cover all possibilities and their 

common part is empty. 

 

4.3  Copula Based Information -Theoretic Measures  

 

The joint entropy  (   ) associated with the joint distribution of   and   using copula density function 

 (     ) from (3.3) can be expressed  

  (   )     ∑     (     )      (     )                                                                 (   ) 

The conditional entropy  (   ) expressed in terms of conditional copula density function  (     ) from 

(3.17) is  

 (   )     ∑     (     )      (     )                                                                   (    ) 

The mutual information (distance from independence)  (   ) between   and   using copula functions is 

expressed by 

  (   )   ∑     (     )   , (     ) * (     )   (     )+-                     (    ) 

The relative information gain  (   ) in terms of copula functions  

  (   )  
∑     (     )    , (     ) * (     )  (     )+-

∑     (     )    , (     ) * (     )+-
                                               (    ) 

and the symmetrical relative information gain measure 

 (   )    
 ∑     (     )    [

 (     )
* (     )   (     )+

]

∑     (     )    [
* (     )+ 

* (     )   (     )+
]   
                                                               (    ) 

Evaluation of these expressions become cumbersome depending upon the copula functions and the 

marginal probability distributions. An alternative computational method [28] is by expressing probabilities 

of  a pair (     ) belonging to the rectangle    ,    
    

 -     [    
    

 ] in terms of associated copula 

function   (     ) as 

  

    ∫  
  
 

    
 
  ∫  
  
 

    
 
   (   )     ∫  

   
 

     
 
  ∫  
   
 

     
 
   (     )                                                 (    ) 

  

       ∫  
   
 

     
 ∫  

   
 

     
  (     )       (         )                                                     (    ) 

 

where    
    (  

 )  and    
    (  

 ).   
The integrals appearing in (4.14) and (4.15) can be expressed in terms of copula  

 

∫  
   
 

     
 
∫  
   
 

     
 

   (     )

         
      

  (   
     
 )   (     

     
 )   (   

       
 )

  (     
       

 )                     (    ) 

It is easy to calculate information measures by using (4.16) because  (     ) is evaluated at the points of 

partition only. 

 

4.4   Mutual Information using Marshall-Olkin Copula  

 

    One parameter Marshall-Olkin copula [37] is defined by 

  (     )     (  
           

   ) 

        (   -                                                     (    ) 
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The copula density function  (   ) is 

  (     )  

{

(   )  
              

(   )  
               

              

                                                                           (    ) 

The copula parameter   in terms of Kendall's   has a simple expression  

 

   
  

   
                                                                                                                                          (    ) 

The mutual information    (   )  is the entropy of the copula   (   )  itself whatever the marginal 

distributions may be [39]. Using one parameter Marshall-Olkin copula  (   )     

             (   )    
     

   
[   (   )  

 

   
]                                                                           (    ) 

or in terms of Kendall's    
  (   )  

 (   )  0     .
   

   
/1                                                                                      (    ) 

In Figure 5, we depict the behaviour of the mutual information   (   ) versus the copula parameter 

  (   -.  This parametrization of mutual information based on one parameter Marshall-Olkin copula is 

much more accurate than based on the correlation parameter while keeping the same level of 

computational complexity.  

 

4.5  Illustration 

 

We consider two examples to illustrate applications of the information based measures. These examples 

represent situations which refer to the univariate and bivariate distributions. 

 

Example 1. Benford's Law is a powerful and relatively simple tool for pointing suspicion at frauds, 

embezzlers, tax evaders, sloppy accountants and even computer bugs. The income tax and accounting 

agencies  often use detection software based on Benford's Law. Dr. Frank Benford, a physicist at the 

General Electric Company, noticed that pages of logarithms corresponding to numbers starting with the 

numeral 1 were much dirtier and more worn than other pages. He thought that it was unlikely that 

physicists and engineers had some special preference for logarithms starting with 1. He therefore embarked 

on a mathematical analysis of 20,229 sets of numbers from different applications. All these seemingly 

unrelated sets of numbers followed the same first-digit probability pattern as the worn pages of logarithm 

tables suggested. In all cases, the number 1 turned up as the first digit about 30 percent of the time, more 

often than any other. He derived a formula to explain this phenomenon. If absolute certainty is considered 

as 1 and absolute impossibility as 0, then the leading digit   ,     -  in base   occurs with 

probability  ( )      0    
 

 
1  This quantity is exactly the space between   and     in a 

logarithmic scale. Probability distribution is given in Table 3. The entropy as a measure of equality of 

digits 1 through 9 is  ( )   ∑                    dits/digit  and maximum entropy     ( )  
               dits/digit.  Thus, the uncertainty in the distribution of digits in the table is less than the 

maximum possible uncertainty. This reduction in uncertainty is due to the information available that all 

digits in the table do not occur in the same proportion. 

 

Example 2.  A mobile ad hoc computer network consists of several computers (nodes) that move within a 

network area. When the recieving node is out of range, message must be sent to a nearby node which then 

forwards it along a routing path towards its destination. Data overhead is the number of bytes of 

information that must be transmitted along with the messages to get them to the right places. A successful 

protocol will generally have a low data overhead. Data on  average node speed (Speed),  length of time that 
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nodes pause at each destination (Pause Time), link change rate (LCR) and data overhead (Overhead) for 

the 25 simulated mobile ad hoc networks is taken from [2] and  summary statistics are given in Table 4.  

 

From the summary statistics in Table 4, dependence measures using  Kendall's    between Overhead and 

Speed is  0.0.467,  Overhead and Pause Time is  0.577 and  Overhead and LCR is  -0.239. Correlations of 

Overhead with Speed and Pause Time both are positive and highly significant however with LCR, it is 

negative and  not significant.  Therefore, Marshall -Olkin copula being contrained for positive  correlations 

can not be applied to measure dependence using LCR.  We calcualted Marshall-Olkin copula parameter    

for Overhead and Speed as 0.6367 and for Overhead and Pause Time as 0.7318.  

 

Since Marshall-Olkin copula parameter   (   -                          indicate a higher degree 

of dependence.  Uncertainty  in this example is bounded between 0 and 3.2189. Mutual information using 

natural  log  for Overhead and Speed is 0.2907 and for Overhead and Pause Time is 0.3126. Thus, 

uncertainty in Overhaead caused by the knowledge of  Speed  is higher compared to Pause Time.   

Alternatively we can say that the amount of information of Overhead contained in Pause Time is more than 

the information of Overhead contained in Speed. Pause Time and Speed are important variables in 

modeling the dependence of Overhead.   

 

5 Conclusions 

 

              Pearson’s linear correlation based statistical methods have dominated statistical modeling and 

inference literature until recent. However researchers have now realized problems with uses of correlation 

and accepted the fact that such methods are useful only when considering multivariate normal populations.  

Multivariate normal distributions are appealing because their marginal distributions are also normal and 

the association between any two random variables can be fully described knowing only the marginal 

distributions and the dependence parameter measured by the Pearson’s linear correlation coefficient. There 

are often situations in the non-normal world wherein normal distributions fail to provide an adequate 

approximation. Therefore dependence metrics like information measures and copulas which seem to be 

appropriate alternative to the correlation need special considerations and investigations in the context of 

statistical inference.  Copula functions and copula parameters are applied to model the dependence and 

simulate multivariate populations.  There exist several families of copulas from which the best copula can 

be selected for a particular application. Mutual information in terms of Kullback-Leibler divergence is 

often studied however there are other several generalized divergence measures which may be investigated. 

Mutual information is expressible in terms of copula functions and thus copulas can play an important role 

in analyzing mutual information.  Marginal distributions and copula of a multivariate distribution are 

inextricably linked. Copula separates the dependence from the marginal distributions. Various families of 

copulas like Archimedean, Gaussian,  ( ), elliptical, extreme value  are available and may be preferred 

because of mathematical tractability. Copulas are considered as an alternative to Gaussian models in a non-

Gaussian world. There is almost no or very little statistical theory, estimation and significance testing, 

developed based on copulas. Sensitivity studies of estimation procedures and goodness-of-tests for copulas 

are unknown. It is unclear whether a good fit of the copula to the data yields a good fit to the distribution 

of the population data.   

 

Table 1.  Archimedean copulas, Generator Functions and Kendall’s τ. 
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Table 2. Post-treatment proportions of sites exhibiting plaque in treatment and control groups (    ). 

 Treatment Control   

Mean 0.8913 0.7717 Pearson correlation  0.1351 

Standard 

deviation 

0.1656 0.2373 Kendall’s τ 0.1761 

Skewness -1.2882 -0.5346 Spearman’s  ρs 0.2604 

Marginal 

distribution 

Beta(66.88,8.16) Beta(57.91,17.13) AMH copula θ 0.6481 

 

Table 3.   Probability distribution of digit   ,     - in base       
d: 1 2 3 4 5 6 7 8 9 

p: 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 

 

Table 4.   Average node speed, pause time that nodes pause at each destination, link change rate (LCR) and 

data overhead for simulated mobile ad hoc networks (    ). 
 Overhead 

(kB) 

Speed 

(m/s) 

Pause 

Time 

(s) 

LCR 

(100/s) 

Overhead  vs. Speed Pause 

Time 

LCR 

(100/s) 

Mean 481.773 21 30 15.227 Correlation 0.526
* 

0.738
* 

-0.239 

Standard 

deviation 

  28.957 13.070 14.434   8.088 Kendall’s τ 0.467
* 

0.577
* 

-0.040 

Skewness   -1.840   0.219  0   1.401 Spearman’s  

   
0.565

* 
0.722

* 
-0.007 

* 
 1% significance level. 

 

Figure 1.   Rank correlations and AMH Copula parameter. 
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Figure 2.   Scatter plots of AMH copula simulated data for n = 50 and 100. 

  

  
 

Figure 3. Joint probability model and conditional probability model.  

 

  

  

Figure 4. Tail dependence indices for AMH copula parameter θ = -1, -0.5, 0, 0.5, 1. 

 

  
 

 

Figure 5. Mutual information and dependence parameter.  

AMH simulatuions = 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

u1

u
2

AMH simulations = 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

u1

 u
2

AMH copula based on Kendall's tau.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

u1

c
o
n
d
it
io

n
a
l 
p
ro

b
a
b
ili
ty

c(u2|u1=.05) c(u2|u1=.25) c(u2|u1=.5)

c(u2|u1=.75) c(u2|u1=.95)

Low er Tail Dependence

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

-1 -0.5 0 0.5 1

Upper Tail Dependence

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

-1 -0.5 0 0.5 1



 

Pranesh Kumar: Statistical Dependence: Copula Functions …            

 

02 

 

 

Acknowledgments  

This work was supported by author’s Discovery Grant from the Natural Sciences and Engineering 
Research Council of Canada (NSERC). 

 

 

References 

 
[1] Akaike, H. Information theory and an extension of the maximum likelihood principle.  Proc. Second Int. Symp. 

Information Theory (1972), 267-281. 

[2] Boleng, J., Navidi, W. and Camp, T.   Proceedings of the International Conference on Wireless Networks (2002), 293-

298. 

[3] Calsaverini, R.S. and Vicente, R.  An information theoretic approach to statistical dependence: Copula information. 

Europhysics Letters (2009), 88, 68003, doi:10.1209/0295-5075/88/68003. 

[4] Clayton, D.G.   A model for association in bivariate life tables and its application in epidemiological studies of 

familial tendency in chronic disease incidence. Biometrika, 65 (1978),141-151. 

[5] Cuadras, C.M., Fortiana, J. and Rodrguez Lallena, J.A.  Distributions with Given Marginals and Statistical Modelling 

(2002). Dodrechts: Kluwer Academic Publishers. 

[6] Embrechts, P., McNeil, A. and Straumann, D.   Correlation and dependence in risk management: Properties and 

Pitfalls. Risk,12,5 (1997), 69-71. 

[7] Embrechts, P., McNeil, A. and Straumann, D.  Correlation and dependence in risk management: properties and 

pitfalls. Risk Management: Value at Risk and Beyond, ed. M.A.H. Dempster, Cambridge University Press, Cambridge 

(2002), 176-223. 

[8] Fang, K.-T., Kotz, S. and Ng, K.-W. Symmetric Multivariate and Related Distributions (1987). London: Chapman & 

Hall. 

[9] Frank, M.J. On the simultaneous associativity of  (   ) and      (   ). Aequationes Mathematicae 19 (1979) 

,194-226. 

[10] Frécht, M.   Sue les tableaux de corrélation dont les marges son données. Ann. Univ. Lyon, Sect. A, 9 (1951), 53-77. 

[11] Frees E. W., and E. Valdez. Understanding relationships using copulas. North American Actuarial Journal, 2,1 

(1998),1-25. 

[12] Galton, F.   Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute of Great 

Britain and Ireland, 15 (1886), 246–263. 

[13] Genest, C.   Franks family of bivariate distributions. Biometrika, 74 (1987), 549-555. 

[14] Genest, C. and Mackay, J. The joy of copulas: Bivariate distributions with uniform marginals. American Statistician, 

40 (1986) ,280-283. 

[15] Genest, C., and Rivest, L. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American 

Statistical Association, 88 (1993),1034-1043. 

[16] Genest, C., Ghoudi, K. and Rivest, L.  A semi-parametric estimation procedure of dependence parameters in 

multivariate families of distributions. Biometrika, 82 (1995) ,543-552. 

[17] Gumbel, E.J.  Bivariate exponential distributions. Journal of the American Statistical Association, 55 (1960), 698-707. 

[18] Hartley, R.V.L.   Transformation of information. Bell Systems Technical Journal, 7 (1928), 535-563. 

[19] Herath, H. and Kumar, Pranesh. New research directions in engineering economics – modeling dependencies with 

copulas. Engineering Economist, 52:4 (2007), 305-331. 

[20] Hougaard, P.  A class of multivariate failure time distributions. Biometrika,73 (1986),671-678. 

0

0.5

0 0.10.20.30.40.50.60.70.80.9 1

I(X,Y) 



  
                       Pranesh Kumar: Statistical Dependence: Copula Functions …   

03 

[21] Hutchinson, T.P. and Lai, C.D.   Continuous Bivariate Distributions Emphasizing Applications (1990). Adelaide, 

South Australia: Rumsby Scientific Publishing. 

[22] Joe, H.   Multivariate Models and Dependent Concepts (1997). New York: Chapman & Hall. 

[23] Johnson, M.E.   Multivariate Statistical Simulation (1987). New York: John Wiley & Sons. 

[24] Kapur, J.N.  Maximum Entropy Models in Science and Engineering (1989) . Wiley Eastern, Delhi. 

[25] Kapur, J.N. and Kesavan, H.K. Entropy Maximization Principles with Applications (1992). Academic Press. 

[26] Karmeshu and Pal, N.R.   Uncertainty, entropy and maximum entropy principles- An overview. In Entropy Measures, 

Maximum Entropy Principles and Engineering Applications (2002), Karmeshu (Ed), Springer. 

[27] Kimeldorf, G. and Sampson, A. R.   Monotone dependence. Annals of Statistics, 6 (1978), 895-903. 

[28] Kovács, E.  On the using of copulas in characterizing of dependence with entropy. Pollack Periodica- An 

International Journal from Engineering and Information Sciences (2007). 

[29] Kruskal, W.H.   Ordinal Measures of Association. Journal of American Statistical Association, 53 (1958), 284, 814-

861. 

[30] Kullback, S. and Leibler, R.A.   On information and sufficiency. Annals Mathematical Statistics, 22 (1951), 79-86. 

[31] Kumar, Pranesh. Copulas as an alternative dependence measure and copula based simulation with applications to 

clinical data. Bulletin Int. Statist. Inst., LXII (2007), 2674-2677. 

[32] Kumar, Pranesh. Applications of the Farlie-Gumbel-Morgenstern copulas in predicting the properties of the Titanium 

welds.  International Journal of Mathematics, 1, 1 (2009),13-22. 

[33] Kumar, Pranesh. Copula functions as a tool in statistical modelling and simulation.Proceedings of the International 

Conference on Methods and Models in Computer Science (ICM2CS09). IEEE Xplore (2009).  

[34] Kumar, Pranesh and Shoukri, M. M.  Evaluating aortic stenosis using the Archimedean copula methodology.  Journal 

of Data Science,6 (2008), 173-187. 

[35] Kumar, Pranesh and Shoukri, M. M. (2007). Copula Functions for Modelling Dependence Structure with Applications 

in the Analysis of Clinical Data. Journal of Indian Soc. Agric. Statist., 61(2), 179-191. 

[36] Kumar, P. (2011). Copulas: Distribution functions and simulation. In Lovric, Miodrag (Ed), International 

Encyclopedia of Statistical Science. Heidelberg: Springer Science+Business Media, LLC. 

[37] Marshall, A.W. and Olkin, I. (1988). Families of Multivariate Distributions. Journal of the American Statistical 

Association, 83,834-841. 

[38] Mathai, A.M. and Rathie, P.N. (1975). Basic Concepts in Information Theory and Statistics. John Wiley & Sons. 

[39] Mercier, G. (2005). Measures de Dépendance entre Images RSO. GET/ENST Bretagne, Tech. report RR-2005003-TI. 

http//:perso.enst-bretagne.fr/126mercierg. 

[40] Montgomery, D.C. (2009). Design and Analysis of Experiments. 7th edition, John Wiley. 

[41] Morrow, D., Wood, D.P. and Speechley, M. (1992). Clinical effect of subgingival chlorhexidine irrigation on 

gingivitis in adolescent orthodontic patients. American Journal of Orthodontics and Dentofacial Orthopedics, 101, 

408-413. 

[42] Nelsen, R. (2006). An Introduction to Copulas. New York: Springer. 

[43] Nelsen, R.B., Quesada Molina, J.J., Rodrguez Lallena, J.A. and Úbeda Flores, M. (2001). Bounds on bivariate 

distribution functions with given margins and measures of association. Commun. Statist.-Theory Meth., 30, 1155-

1162. 

[44] Nyquist, H. (1928). Certain topics in telegraph transmission theory. Trans. AIEE, vol. 47, pp. 617-644. Reprint as 

classic paper in: Proc. IEEE, Vol. 90, No. 2, Feb 2002. 

[45] Scarsini, M. (1984). On measures of concordance. Stochastica,8,201-219. 

[46] Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces. New York: North Holland. 

[47] Schweizer, B. and Wolff, E. (1981). On nonparametric measures of dependence for random variables. Annals of 

Statistics, 9, 879-885. 

[48] Shannon, C.E. (1948). A Mathematical Theory of Communication- An Integrated Approach. Cambridge University 

Press. 

[49] Sklar, A. (1959). Fonctions de répartition á n dimensional et leurs marges. Publ. Inst. Stat. Univ. Paris, 8, 229-231. 

[50] Tjøstheim, D. (1996). Measures of dependence and tests of independence. Statistics, 28, 249-284. 

[51]  Yao, Y.Y. (2002). Information-theoretic measures for knowledge discovery. In Entropy Measures, Maximum Entropy 

Principles and Engineering Applications, Karmeshu (Ed), Springer. 

  


